Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Materials (Basel) ; 17(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38591537

RESUMO

The material undergoes high temperature and high strain rate deformation process during the cutting process, which may induce the dynamic recrystallization behavior and result in the evolution of dynamic mechanical properties of the material to be machined. In this paper, the modified Johnson-Cook (J-C) model for nickel-based powder metallurgy superalloy considering dynamic recrystallization behavior in high strain rate and temperature is proposed. The dynamic mechanical properties of the material under different strain rates and temperature conditions are obtained by quasi-static compression test and split Hopkinson pressure bar (SHPB) test. The coefficients of the modified J-C model are obtained by the linear regression method. The modified model is verified by comparison with experimental and model prediction results. The results show that the modified J-C model proposed in this paper can accurately describe the mechanical properties of nickel-based powder metallurgy superalloys at high temperatures and high strain rates. This provides help for studying the cutting mechanism and finite element simulation of nickel-based powder metallurgy superalloy.

3.
Diabetes Metab Syndr Obes ; 17: 1301-1308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505539

RESUMO

Background: Changes in body composition accompanied by glucagon-like peptide 1 receptor agonist (GLP-1RA) induced weight loss have drawn much attention. However, fewer studies have reported body composition changes in patients receiving dulaglutide therapy in Chinese population. Methods: A total of 70 overweight/obese type 2 diabetes mellitus (T2DM) patients who received dulaglutide therapy were included. Clinical data were collected. Visceral fat area (VFA) and body composition were also measured. Changes in clinical indicators and body composition of patients before and after intervention were also analyzed. Correlation analysis and multiple linear regression model were used to evaluate the association between hemoglobin A1C (HbA1c) and body composition. Results: The results showed that body weight (BW), VFA, body fat (BF), lean body mass (LBM), skeletal muscle mass (SMM) and water content were reduced after 3 months dulaglutide intervention. The lean body mass percentage (LBMP) and skeletal muscle mass percentage (SMMP) significantly increased. Moreover, there was no significant difference in bone mineral quality (BMQ) after the intervention. The multiple linear regression model revealed that the % change in BF was independently associated with % change in HbA1c (ß = 0.449, t = 3.148, p=0.002). Conclusion: These results indicate that dulaglutide intervention does not cause muscle and bone mass loss while inducing weight loss, and % change in BF was independently associated with improved glucose control during dulaglutide therapy. This study offers some positive results to support the clinical application of dulaglutide.

5.
Cell Death Discov ; 10(1): 68, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336777

RESUMO

Embryonic stem cells (ESCs) exhibit unique attributes of boundless self-renewal and pluripotency, making them invaluable for fundamental investigations and clinical endeavors. Previous examinations of microgravity effects on ESC self-renewal and differentiation have predominantly maintained a descriptive nature, constrained by limited experimental opportunities and techniques. In this investigation, we present compelling evidence derived from murine and human ESCs, demonstrating that simulated microgravity (SMG)-induced stress significantly impacts self-renewal and pluripotency through a previously unidentified conserved mechanism. Specifically, SMG induces the upregulation of heat shock protein genes, subsequently enhancing the expression of core pluripotency factors and activating the Wnt and/or LIF/STAT3 signaling pathways, thereby fostering ESC self-renewal. Notably, heightened Wnt pathway activity, facilitated by Tbx3 upregulation, prompts mesoendodermal differentiation in both murine and human ESCs under SMG conditions. Recognizing potential disparities between terrestrial SMG simulations and authentic microgravity, forthcoming space flight experiments are imperative to validate the impact of reduced gravity on ESC self-renewal and differentiation mechanisms.

6.
Int J Biol Sci ; 20(4): 1142-1159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385086

RESUMO

Human embryonic stem cells (hESCs) can proliferate infinitely (self-renewal) and give rise to almost all types of somatic cells (pluripotency). Hence, understanding the molecular mechanism of pluripotency regulation is important for applications of hESCs in regenerative medicine. Here we report that PATZ1 is a key factor that regulates pluripotency and metabolism in hESCs. We found that depletion of PATZ1 is associated with rapid downregulation of master pluripotency genes and prominent deceleration of cell growth. We also revealed that PATZ1 regulates hESC pluripotency though binding the regulatory regions of OCT4 and NANOG. In addition, we demonstrated PATZ1 is a key node in the OCT4/NANOG transcriptional network. We further revealed that PATZ1 is essential for cell growth in hESCs. Importantly, we discovered that depletion of PATZ1 drives hESCs to exploit glycolysis which energetically compensates for the mitochondrial dysfunction. Overall, our study establishes the fundamental role of PATZ1 in regulating pluripotency in hESCs. Moreover, PATZ1 is essential for maintaining a steady metabolic homeostasis to refine the stemness of hESCs.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Zinco , Motivos AT-Hook , Diferenciação Celular/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco , Proteínas Repressoras/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo
7.
Sci Total Environ ; 916: 170147, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242486

RESUMO

The impacts of the increased iron in the waste-activated sludge (WAS) on its anaerobic digestion were investigated. It was found that low Fe(III) content (< 750 mg/L) promoted WAS anaerobic digestion, while the continual increase of Fe(III) inhibited CH4 production and total chemical oxygen demand (TCOD) removal. As the Fe(III) content increased to 1470 mg/L, methane production has been slightly inhibited about 5 % compared with the group containing 35 mg/L Fe(III). Particularly, as Fe(III) concentration was up to 2900 mg/L, CH4 production, and TCOD removal decreased by 43.6 % and 37.5 %, respectively, compared with the group with 35 mg/L Fe(III). Furthermore, the percentage of CO2 of the group with 2900 mg/L Fe(III) decreased by 52.8 % compared with the group containing 35 mg/L Fe(III). It indicated that Fe(II) generated by the dissimilatory iron reduction might cause CO2 consumption, which was confirmed by X-ray diffraction that siderite (FeCO3) was generated in the group with 2900 mg/L Fe(III). Further study revealed that Fe(III) promoted the WAS solubilization and hydrolysis, but inhibited acidification and methane production. The methanogenesis test with H2/CO2 as a substrate showed that CO2 consumption weakened hydrogenotrophic methanogenesis and then increased H2 partial pressure, further causing VFA accumulation. Microbial community analysis indicated that the abundance of hydrogen-utilizing methanogens decreased with the high Fe(III) content. Our study suggested that the increase of Fe(III) in sludge might inhibit methanogenesis by consuming or precipitating CO2. To achieve maximum bioenergy conversion, the iron content should be controlled to lower than 750 mg/L. The study may provide new insights into the mechanistic understanding of the inhibition of high Fe(III) content on the anaerobic digestion of WAS.


Assuntos
Compostos Férricos , Esgotos , Esgotos/química , Anaerobiose , Dióxido de Carbono , Metano , Ferro/química , Reatores Biológicos
8.
Artigo em Inglês | MEDLINE | ID: mdl-38183606

RESUMO

Increasing evidence suggests that osteoblast apoptosis contributes to the pathogenesis of postmenopausal osteoporosis (PMOP). This study aimed to identify a hub gene associated with osteoporosis (OP) progression and its functions. We utilized the GSE68303 expression dataset from GEO database and conducted weighted gene co-expression network analysis (WGCNA) to investigate changes in co-expressed genes between sham and ovariectomy (OVX) groups. Differentially expressed genes (DEGs) were identified using the "limma" R package on GSE68303 dataset. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID database. A protein-protein interaction (PPI) network was constructed using the STRING database, which was visualized by Cytoscape software. The top ten hub genes were screened using the Cytohubba plugin, among which POU class 2 homeobox associating factor 1 (POU2AF1), an OP-related hub gene, showed a significant increase in OVX-induced mouse model based on immunohistochemical staining. Inhibition of POU2AF1 suppressed cell viability, induced cell cycle arrest at the G1 phase, and promoted osteoblast apoptosis as demonstrated by CCK-8 assay, flow cytometry analysis, and TUNEL assay. Moreover, overexpression of POU2AF1 decreased cleaved caspase-3/-8/-9 expression while increasing cyclinD1 and Ki67 expression in MC3T3-E1 and hFOB1.19 cells. Therefore, POU2AF1 may serve as a potential diagnostic biomarker for slowing down the progression of OP.

9.
BMC Med Genomics ; 16(1): 317, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057821

RESUMO

BACKGROUND: Glioma cells have increased intake and metabolism of methionine, which can be monitored with 11 C-L-methionine. However, a short half-life of 11 C (~ 20 min) limits its application in clinical practice. It is necessary to develop a methionine metabolism genes-based prediction model for a more convenient prediction of glioma survival. METHODS: We evaluated the patterns of 29 methionine metabolism genes in glioma from the Cancer Genome Atlas (TCGA). A risk model was established using Lasso regression analysis and Cox regression. The reliability of the prognostic model was validated in derivation and validation cohorts (Chinese Glioma Genome Atlas; CGGA). GO, KEGG, GSEA and ESTIMATE analyses were performed for biological functions and immune characterization. RESULTS: Our results showed that a majority of the methionine metabolism genes (25 genes) were involved in the overall survival of glioma (logrank p and Cox p < 0.05). A 7-methionine metabolism prognostic signature was significantly related to a poor clinical prognosis and overall survival of glioma patients (C-index = 0.83). Functional analysis revealed that the risk model was correlated with immune responses and with epithelial-mesenchymal transition. Furthermore, the nomogram integrating the signature of methionine metabolism genes manifested a strong prognostic ability in the training and validation groups. CONCLUSIONS: The current model had the potential to improve the understanding of methionine metabolism in gliomas and contributed to the development of precise treatment for glioma patients, showing a promising application in clinical practice.


Assuntos
Glioma , Humanos , Reprodutibilidade dos Testes , Prognóstico , Glioma/genética , Metionina , Racemetionina
10.
Nucleic Acids Res ; 51(21): 11634-11651, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37870468

RESUMO

Bromodomain-containing protein 9 (BRD9) is a specific subunit of the non-canonical SWI/SNF (ncBAF) chromatin-remodeling complex, whose function in human embryonic stem cells (hESCs) remains unclear. Here, we demonstrate that impaired BRD9 function reduces the self-renewal capacity of hESCs and alters their differentiation potential. Specifically, BRD9 depletion inhibits meso-endoderm differentiation while promoting neural ectoderm differentiation. Notably, supplementation of NODAL, TGF-ß, Activin A or WNT3A rescues the differentiation defects caused by BRD9 loss. Mechanistically, BRD9 forms a complex with BRD4, SMAD2/3, ß-CATENIN and P300, which regulates the expression of pluripotency genes and the activity of TGF-ß/Nodal/Activin and Wnt signaling pathways. This is achieved by regulating the deposition of H3K27ac on associated genes, thus maintaining and directing hESC differentiation. BRD9-mediated regulation of the TGF-ß/Activin/Nodal pathway is also demonstrated in the development of pancreatic and breast cancer cells. In summary, our study highlights the crucial role of BRD9 in the regulation of hESC self-renewal and differentiation, as well as its participation in the progression of pancreatic and breast cancers.


Assuntos
Células-Tronco Embrionárias Humanas , Neoplasias , Humanos , Fator de Crescimento Transformador beta/genética , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Ativinas/metabolismo , Via de Sinalização Wnt , Neoplasias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
11.
Biochem Pharmacol ; 217: 115829, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748664

RESUMO

Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have emerged as promising tools for promoting bone regeneration. This study investigates the functions of EVs derived from bone marrow-derived MSCs (BMSCs) in osteoporosis (OP) and the molecular mechanism. EVs were isolated from primary BMSCs in mice. A mouse model with OP was induced by ovariectomy. Treatment with EVs restored bone mass and strength, attenuated trabecular bone loss and cartilage damage, and increased osteogenesis while suppressing osteoclastogenesis in ovariectomized mice. In vitro, the EVs treatment improved the osteogenic differentiation of MC-3T3 while inhibiting osteoclastic differentiation of RAW264.7 cells. Microarray analysis revealed a significant upregulation of ubiquitin specific peptidase 7 (USP7) expression in mouse bone tissues following EV treatment. USP7 was found to interact with Yes1 associated transcriptional regulator (YAP1) and stabilize YAP1 protein through deubiquitination modification. YAP1-related genes were enriched in the Wnt/ß-catenin signaling, and overexpression of YAP1 promoted the nuclear translocation of ß-catenin. Functional experiments underscored the critical role of maintaining USP7, YAP1, and ß-catenin levels in the pro-osteogenic and anti-osteoclastogenic properties of the BMSC-EVs. In conclusion, this study demonstrates that USP7, delivered by BMSC-derived EVs, stabilizes YAP1 protein, thereby ameliorating bone formation in OP through the Wnt/ß-catenin activation.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteoporose , Animais , Feminino , Camundongos , beta Catenina/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Osteoporose/metabolismo , Estabilidade Proteica , Peptidase 7 Específica de Ubiquitina/genética , Regulação para Cima , Via de Sinalização Wnt
12.
World Neurosurg ; 178: 70-77, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454905

RESUMO

BACKGROUND: Thoracolumbar disc herniation (TLDH) is a rare disorder with unique characteristics that can result in undesirable surgical outcomes after traditional discectomy. In view of the widespread use of transforaminal endoscopic discectomy for lower lumbar disc herniation, we investigated treatment of TLDH by this procedure. The purpose of this study was to evaluate the clinical efficacy of transforaminal endoscopic discectomy for treating TLDH and share our technical experience. METHODS: We retrospectively evaluated the clinical data of 19 patients who had undergone transforaminal endoscopic discectomy for TLDH in our institution between April 2018 and July 2021. Operation time, follow-up time, blood loss, postoperative hospital stay, visual analog scale scores for low-back and leg pain, and Japanese Orthopedic Association (JOA) scores were evaluated. RESULTS: The differences between preoperative and postoperative JOA and visual analog scale scores were significant (P < 0.05). According to the JOA scores, 14 of the 19 patients had excellent improvement, 3 had good improvement, and 2 had fair improvement; thus, the rate of satisfactory improvement was 89.5%. CONCLUSIONS: Operation time, blood loss, postoperative hospital stay, and surgical outcomes were favorable. Transforaminal endoscopic discectomy is an ideal surgical procedure for treating TLDH.

13.
J Transl Med ; 21(1): 452, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422640

RESUMO

BACKGROUND: Osteoarthritis (OA), in which macrophage-driven synovitis is considered closely related to cartilage destruction and could occur at any stage, is an inflammatory arthritis. However, there are no effective targets to cure the progression of OA. The NOD-, LRR-,and pyrin domain-containing protein 3 (NLRP3) inflammasome in synovial macrophages participates in the pathological inflammatory process and treatment strategies targeting it are considered to be an effective approach for OA. PIM-1 kinase, as a downstream effector of many cytokine signaling pathways, plays a pro-inflammatory role in inflammatory disease. METHODS: In this study, we evaluated the expression of the PIM-1 and the infiltration of synovial macrophages in the human OA synovium. The effects and mechanism of PIM-1 were investigated in mice and human macrophages stimulated by lipopolysaccharide (LPS) and different agonists such as nigericin, ATP, Monosodium urate (MSU), and Aluminum salt (Alum). The protective effects on chondrocytes were assessed by a modified co-culture system induced by macrophage condition medium (CM). The therapeutic effect in vivo was confirmed by the medial meniscus (DMM)-induced OA in mice. RESULTS: The expression of PIM-1 was increased in the human OA synovium which was accompanied by the infiltration of synovial macrophages. In vitro experiments, suppression of PIM-1 by SMI-4a, a specific inhibitor, rapidly inhibited the NLRP3 inflammasome activation in mice and human macrophages and gasdermin-D (GSDME)-mediated pyroptosis. Furthermore, PIM-1 inhibition specifically blocked the apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization in the assembly stage. Mechanistically, PIM-1 inhibition alleviated the mitochondrial reactive oxygen species (ROS)/chloride intracellular channel proteins (CLICs)-dependent Cl- efflux signaling pathway, which eventually resulted in the blockade of the ASC oligomerization and NLRP3 inflammasome activation. Furthermore, PIM-1 suppression showed chondroprotective effects in the modified co-culture system. Finally, SMI-4a significantly suppressed the expression of PIM-1 in the synovium and reduced the synovitis scores and the Osteoarthritis Research Society International (OARSI) score in the DMM-induced OA model. CONCLUSIONS: Therefore, PIM-1 represented a new class of promising targets as a treatment of OA to target these mechanisms in macrophages and widened the road to therapeutic strategies for OA.


Assuntos
Osteoartrite , Sinovite , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Osteoartrite/tratamento farmacológico , Macrófagos/metabolismo , Transdução de Sinais , Sinovite/metabolismo , Interleucina-1beta/metabolismo , Canais de Cloreto/metabolismo , Canais de Cloreto/farmacologia , Canais de Cloreto/uso terapêutico , Proteínas Mitocondriais/metabolismo
14.
World J Clin Cases ; 11(15): 3583-3591, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37383891

RESUMO

BACKGROUND: Pyogenic spondylitis is often manifested as atypical low back pain and fever, which makes it easy to be confused with other diseases. Here we report a case of pyogenic spondylitis and describe the diagnosis and treatment based on the related literature. CASE SUMMARY: The reported case suffered from pyogenic spondylitis caused by Escherichia coli and complicated with bacteremia and psoas abscess. Acute pyelonephritis was initially diagnosed due to atypical symptoms. Symptoms were improved from antibiotic treatment while developing progressive lower limb dysfunction. One month post the admission, the patient underwent anterior lumbar debridement + autogenous iliac bone graft fusion + posterior percutaneous screw-rod internal fixation, and received 6 wk of antibiotic treatment after the operation. Reexamination 4 mo post the operation showed that the patient had no evident pain in the waist, and walked well with no evident dysfunction of lower limbs. CONCLUSION: Here we describe the application value of several imaging examinations, such as X-ray, computed tomography and magnetic resonance imaging, and certain tests like erythrocyte sedimentation rate and C-reactive protein in the clinical treatment of pyogenic spondylitis. This disease requires early diagnosis and treatment. Sensitive antibiotics should be used in early stages and surgical intervention should be taken if necessary, which may help for a speedy recovery and prevent the occurrence of severe complications.

15.
Adv Sci (Weinh) ; 10(25): e2301043, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37377084

RESUMO

Phase-change random-access memory (PCRAM) devices suffer from pronounced resistance drift originating from considerable structural relaxation of phase-change materials (PCMs), which hinders current developments of high-capacity memory and high-parallelism computing that both need reliable multibit programming. This work realizes that compositional simplification and geometrical miniaturization of traditional GeSbTe-like PCMs are feasible routes to suppress relaxation. While to date, the aging mechanisms of the simplest PCM, Sb, at nanoscale, have not yet been unveiled. Here, this work demonstrates that in an optimal thickness of only 4 nm, the thin Sb film can enable a precise multilevel programming with ultralow resistance drift coefficients, in a regime of ≈10-4 -10-3 . This advancement is mainly owed to the slightly changed Peierls distortion in Sb and the less-distorted octahedral-like atomic configurations across the Sb/SiO2 interfaces. This work highlights a new indispensable approach, interfacial regulation of nanoscale PCMs, for pursuing ultimately reliable resistance control in aggressively-miniaturized PCRAM devices, to boost the storage and computing efficiencies substantially.

16.
Nanomaterials (Basel) ; 13(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37299701

RESUMO

Photocatalytic elimination of antibiotics from the environment and drinking water is of great significance for human health. However, the efficiency of photoremoval of antibiotics such as tetracycline is severely limited by the prompt recombination of electron holes and slow charge migration efficacy. Fabrication of low-dimensional heterojunction composites is an efficient method for shortening charge carrier migration distance and enhancing charge transfer efficiency. Herein, 2D/2D mesoporous WO3/CeO2 laminated Z-scheme heterojunctions were successfully prepared using a two-step hydrothermal process. The mesoporous structure of the composites was proved by nitrogen sorption isotherms, in which sorption-desorption hysteresis was observed. The intimate contact and charge transfer mechanism between WO3 nanoplates and CeO2 nanosheets was investigated using high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy measurements, respectively. Photocatalytic tetracycline degradation efficiency was noticeably promoted by the formation of 2D/2D laminated heterojunctions. The improved photocatalytic activity could be attributed to the formation of Z-scheme laminated heterostructure and 2D morphology favoring spatial charge separation, confirmed by various characterizations. The optimized 5WO3/CeO2 (5 wt.% WO3) composites can degrade more than 99% of tetracycline in 80 min, achieving a peak TC photodegradation efficiency of 0.0482 min-1, which is approximately 3.4 times that of pristine CeO2. A Z-scheme mechanism is proposed for photocatalytic tetracycline by from WO3/CeO2 Z-scheme laminated heterojunctions based on the experimental results.

17.
Orthop Surg ; 15(8): 2116-2123, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37232062

RESUMO

OBJECTIVE: The effectiveness of arthroscopic rotator cuff repair (ARCR) on rheumatoid arthritis (RA) patients remains a controversial topic. This study investigates the mid-term outcomes of ARCR in RA patients and identifies the factors influencing clinical efficacy. METHODS: This retrospective study enrolled RA patients with small or medium rotator cuff tears (RCTs) between February 2014 and February 2019. Visual Analog Scale (VAS), American Shoulder and Elbow Surgeons (ASES), and Constant-Murley scores were collected at each follow-up time. Ultimately, magnetic resonance imaging (MRI) and X-ray were employed to assess rotator cuff integrity and progression of shoulder bone destruction, respectively. Statistical methods used two-way repeated-measures ANOVA or generalized estimation equations. RESULTS: A total of 157 patients were identified and divided into ARCR (n = 75) and conservative treatment (n = 82) groups. ARCR group continued to be divided into small tear (n = 35) and medium tear (n = 40) groups. At the final, all scores were better in ARCR group than in the conservative treatment group (p < 0.05). A radiographic evaluation of the final follow-up demonstrated that the progression rate in ARCR group (18.67%) was significantly lower than that of the conservative treatment group (39.02%, p < 0.05). In the comparison of the small tear and medium tear groups, all scores increased significantly after surgery (p < 0.05), and the final follow-up scores were better than preoperative scores (p < 0.05) but worse than those of the 6-month postoperative follow-up (p < 0.05). Comparison between the two groups revealed that all scores of the small tear group were significantly better than those of the medium tear group at 6-month postoperative follow-up (p < 0.05). Although the scores of small tear group remained better than those of the medium group at the final postoperative follow-up, the difference was not statistically significant (p > 0.05). Radiographic assessment of the final follow-up demonstrated that the progression rate in the small tear group (8.57%) was significantly lower than that in the medium group (27.50%, p < 0.05), and the retear rate of small tear group (14.29%) was significantly lower than that of the medium tear group (35.00%, p < 0.05). CONCLUSION: ARCR could effectively improve the quality of life for RA patients with small or medium RCTs, at least in the medium term. Despite the progression of joint destruction in some patients, postoperative retear rates were comparable to those in the general population. ARCR is more likely to benefit RA patients than conservative treatment.


Assuntos
Artrite Reumatoide , Lesões do Manguito Rotador , Humanos , Manguito Rotador/diagnóstico por imagem , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/diagnóstico por imagem , Lesões do Manguito Rotador/cirurgia , Ruptura/cirurgia , Artroscopia/métodos , Resultado do Tratamento , Estudos Retrospectivos , Artrite Reumatoide/cirurgia , Imageamento por Ressonância Magnética , Amplitude de Movimento Articular
18.
J Orthop Surg Res ; 18(1): 389, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37245051

RESUMO

BACKGROUND: Minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) and endoscopic lumbar interbody fusion (Endo-LIF) are both minimally invasive interbody fusion procedures for lumbar degenerative diseases. In this study, we attempted to compare the clinical efficacy and postoperative outcomes of MIS-TLIF and Endo-LIF for lumbar degenerative diseases. METHODS: The study cohort comprised 99 patients with lumbar degenerative diseases treated by MIS-TLIF or Endo-LIF from January 2019 to July 2021. The clinical outcomes (visual analogue scale (VAS), Oswestry disability index (ODI), and MacNab criteria) preoperatively, 1 month postoperatively, 3 months postoperatively, and 1 year postoperatively were compared between the two groups. RESULTS: There were no significant differences between the two groups in sex, age, disease duration, affected spine segment, and complications (P > 0.05). The operation time was significantly longer in the Endo-LIF group than the MIS-TLIF group (155.25 ± 12.57 vs. 123.14 ± 14.50 min; P < 0.05). However, the Endo-LIF group had a significantly smaller blood loss volume (61.79 ± 10.09 vs. 259.97 ± 14.63 ml) and shorter hospital stay (5.46 ± 1.11 vs. 7.06 ± 1.42 days) than the MIS-TLIF group. In both groups, the ODI and VAS scores for lower back pain and leg pain were significantly lower at each postoperative timepoint than preoperatively (P < 0.05). Although there were no significant differences between the two groups in the ODI and VAS scores for lower back pain and leg pain (P > 0.05), the VAS for lower back pain was lower in the Endo-LIF group than the MIS-TLIF group at each postoperative timepoint. The MacNab criteria showed that the improvement rate was 92.2% in the MIS-TLIF group and 91.7% in the Endo-LIF group, with no significant difference between the two groups (P > 0.05). CONCLUSIONS: There were no significant differences in short-term surgical outcomes between the MIS-TLIF and Endo-LIF groups. Compared with the MIS-TLIF group, the Endo-LIF group incurred less damage to surrounding tissues, experienced less intraoperative blood loss, and had less lower back pain, which is more conducive to recovery.


Assuntos
Degeneração do Disco Intervertebral , Dor Lombar , Fusão Vertebral , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Degeneração do Disco Intervertebral/cirurgia , Fusão Vertebral/métodos , Estudos Retrospectivos , Resultado do Tratamento
19.
Materials (Basel) ; 16(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049005

RESUMO

Wood, as a naturally green and environmentally friendly material, has been widely used in the construction and decoration industries. However, the flammability of wood poses serious safety problems. To improve the fire resistance of wood, In this study, it is proposed to use calcium chloride (CaCl2) and disodium hydrogen phosphate (Na2HPO4, DSP) to impregnate wood for multiple cycles. The experimental results show that phosphate mineral precipitation can be deposited on the surface of the wood. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) are used to analyze the micromorphology of mineral precipitation and use the MIP test to analyze the treated wood pore structure. The results show that with the increase in the number of cycles, the phosphate deposited on the surface of the wood increases, and the cumulative pore volume and water absorption rate of the wood after 10 cycles are 54.3% and 13.75% lower than that of untreated wood respectively. In addition, the cone calorimeter (CONE) confirmed that the total heat release (THR) and total smoke production (TSP) of wood treated in 10 cycles have decreased by 48.7% and 54.2% respectively compared with the untreated wood. Hence, this treatment method not only improves the mechanical properties of wood. It also improves fire resistance.

20.
Front Cell Dev Biol ; 11: 1145611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875763

RESUMO

Transcription elongation is a fundamental molecular process which is accurately regulated to ensure proper gene expression in cellular activities whereas its malfunction is associated with impaired cellular functions. Embryonic stem cells (ESCs) have significant value in regenerative medicine due to their self-renewal ability and their potential to differentiate to almost all types of cells. Therefore, dissection of the exact regulatory mechanism of transcription elongation in ESCs is crucial for both basic research and their clinical applications. In this review, we discuss the current understanding on the regulatory mechanisms of transcription elongation mediated by transcription factors and epigenetic modifications in ESCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...